Adjacency Matrix

Home /

Table of Contents

We can represent a graph with a matrix. In the unweighted graph, We can create a matrix with 0 and 1. Here 0 means there is no edge and 1 means there is an edge.
For example, we have a graph below,

image 22 - Adjacency Matrix

We can represent this graph in matrix form like below.

image 23 - Adjacency Matrix

Each cell in the Above matrix is represented as Aij. Here i, and j are vertices, And the value of Aij is either 0 or 1 depending on whether there is an edge from vertice i to j. If there is an edge from i to j, then Aij is 1 otherwise 0.
In a weighted graph, Aij Represents the weight of the edge from vertice i to j.

Adjacency Matrix Code in Python

adjMatrix=[]
n=int(input()) # number of vertices.
m=int(input()) # number of edges


for i in range(n):
	adjMatrix.append([0 for _ in range(n)])


# input edge list.
for i in range(m):
	a, b=map(int, input().split())
	adjMatrix[a][b]=1
	adjMatrix[b][a]=1
	
for i in range(n):
	for j in range(n):
		print(adjMatrix[i][j], end=' ')
	print('')


Adjacency Matrix Code in C++

#include<bits/stdc++.h>

using namespace std;

int main()
{
	int n,m;
	cin>>n; // n is the number of vertices
	cin>>m; // m is the number of edges
	vector<vector<int> > adjMatrix(n, vector<int> (n));

	// input edgelist
	for(int i=0;i<m;i++)
	{
		int a, b;
		cin>>a>>b;
		adjMatrix[a][b]=1;
		adjMatrix[b][a]=1;
	}

	for(int i=0;i<n;i++)
	{
		for(int j=0;j<n;j++)
		{
			cout<<adjMatrix[i][j]<<' ';
		}
		cout<<endl;
	}

	return 0;
}
Share The Blog With Your Friends
Twiter
Facebook
LinkedIn
Email
WhatsApp
Skype
Reddit
Other Recommended Article